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Starting from a rate-equation model proposed by Beenakker, we calculate current-voltage char-
acteristics for symmetric and asymmetric vertical quantum dots. We include up to 26 electrons and
show how single-electron charge interaction, inelastic scattering, and nonadiabatic subband mixing
can enhance the valley current significantly by opening new conduction channels. Subband mixing is
the dominant mechanism increasing the valley current in both symmetric and asymmetric quantum
dots. Single-electron charging is important in asymmetric structures but relatively weak in symmet-
ric structures. Effects of inelastic scattering within the quantum dot are dramatic for asymmetric

structures, but negligible in symmetric structures.

I. INTRODUCTION

Large cross section double barrier resonant tunneling
diodes (DBRTD’s) have been extensively'™ studied and
the quantization of the single-electron states in the film
growth direction has been shown to be crucial in the un-
derstanding of this quantum device. Charge accumula-
tion®® and inelastic scattering®? have also been shown
to modify the device behavior significantly and these in-
teractions have been successfully treated with effective
potentials in a single-electron picture.

In small cross section resonant tunneling diodes elec-
trons are confined in all three dimensions.®™*? This con-
finement of a few electrons has two consequences: (1)
the electronic state spectrum will be discrete and (2) the
usual effective potential treatment of electron-electron in-
teractions becomes invalid and it is necessary to go be-
yond the single-particle picture in order to account for
electronic correlations. Single-electron correlations have
been observed®? in very asymmetric structures in a bias
direction where the collector barrier is thicker and/or
higher than the emitter barrier. This configuration cor-
responds to the one in which intrinsic bistability due to
charge accumulation has been observed in large cross sec-
tion DBRTD’s.* In the other bias direction,® there is no
charge accumulation at all and a very rich resonance
spectrum can be observed. Beenakker!® and Averin
et al.'* have put forward similar rate-equation models
that include single-electron charge correlation and zero-
dimensional (0D)-states in the quantum dot.

Lateral confinement not only alters the single-particle
electronic states of the quantum dot, but also quantizes
the contact states into waveguidelike subbands. The lat-
eral confinement is determined by the charge depletion
width at the lateral boundaries. The charge depletion,
and hence the lateral confinement, and the lateral en-
ergy quantization change with the changing doping level
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along the growth axis of the structure. The role of
the transverse subbands in the leads on high bias trans-
port has been analyzed theoretically for symmetric quan-
tum dots using the assumption of negligible charge accu-
mulation with a single-particle transmission coefficient
approach.11:15718 T{ has been found by comparison to ex-
perimental resultsi®!! that effects due to subbands in
the emitter leading to the quantum dot are significant in
high bias I-V characteristics. In particular it was shown
that nonadiabatic transport processes, which couple lead
subbands to quantum dot states of different lateral quan-
tum numbers, cause additional resonance features in the
valley current region.!®:1!

The treatments including single-electron charging and
elastic and inelastic scattering!31% do not consider ef-
fects due to subband mixing. The treatments of sub-
band mixing?® 7 do not include single-electron charging
and inelastic scattering. In this work we combine the
two treatments to provide a comprehensive model that
includes subband mixing, single-electron charging, and
inelastic scattering for arbitrary bias. This allows us to
address the following questions:

(1) Can Coulomb charge correlation play a role in
symmetric structures? Symmetric quantum dots (whose
emitter and collector barrier heights are equal in flat-
band condition) are expected to have little charge accu-
mulation in either bias direction because the applied bias
effectively lowers the collector barrier height relative to
the emitter barrier height and the rate of outflow to the
collector is larger than the rate of inflow into the quan-
tum dot from the emitter. The transport is expected to
be mostly determined by the single-particle states and
indeed a rich spectrum of resonance energies has been
found experimentally.*0~12

(2) Is subband mixing as important in very asymmet-
ric structures as it is in symmetric structures? One may
argue that this may not be the case since the thick collec-
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tor barrier governs the transport through an asymmetric
structure and modifications due to couplmg at the emit-
ter will be negligible.

(3) How important is the inelastic scattermg in high
bias transport through quantum dots? Can high bias
I-V characteristics be used to indicate the rate of en-
ergy relaxation in the dot? Averin et al.'* assumed in
their high bias calculation that the inelastic scattering is
strong (1/7 > T'L+T'®) such that the electron distribu-
tion in the quantum dot is thermalized. Tunneling rates
through single barriers may vary in a wide range from
10° to 103 1/s depending on the height and thickness of
the barriers. Inelastic scattering rates in quantum dots
have been estimated!® to be in the same range. Direct
measurements of intraband relaxation rates in quantum
dots, for example, by optical methods appear to be very
difficult and we are not aware of any such measurements.
With a thorough analysis of the differences between the
limits2%2! of no inelastic scattering 1/7=0 and strong in-
elastic scattering 1/7 > T'X{®) | we will try to shed light on
the effects of strong and weak electron phonon interaction
in the quantum dots on the high bias I-V characteristic.

In Sec. IT A we first illustrate the many-body rate equa-
tion approach for the case of two states in the quan-
tum dot. We then describe the model for subband
mixing (Sec. IIB) and explain our numerically efficient
setup of the rate equations in multiple degenerate states
(Sec. IIC). In Sec. III we evaluate the transport. proper-
ties through two different quantum dots, symmetric and
asymmetric, and address the questions stated above. We
have deferred the details of the mathema.tlcal formulation
to the Appendix.

II. MODEL

We are interested in modeling high bias transport
through a central confined system with interacting elec-
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FIG. 1. Conduction band profile of a single quantum dot.
Subband energy spacing in the leads is 10 meV and sin-
gle-particle state energy spacing in the quantum dot is 15
meV. The Fermi energy in the leads is 38 meV (three sub-
bands are occupied). The conduction band in the quantum
dot and barriers is raised by Fgcat = 50 meV due to charge
depletion. The quantum dot is assumed to be In.Ga; xAs
with a conduction band offset of Eog = —50 meV. The thick-
nesses of the spacer layers and the quantum well are 50 and

dspacer

60 A, respectively. The longitudinal energy quantization E,

is 60 meV. The temperature is T'= 0.9 K, corresponding to
kyT'=0.08 meV. Barrier thicknesses and Al fractions vary for
the simulated symmetric and asymmetric structures.
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trons. We are following Beenakker'? in the modeling of
high bias transport using rate equations where the many-
body states in the quantum dot are coupled to adjacent
leads via sequential, single-electron tunneling. The states .
in a quantum dot (see Fig. 1) may be a complicated su-
perposition of single-electron states.??72? The assump-
tion of constant charging energy is used to construct the
many-body states in the quantum dot easily. The limita-
tions of this ansatz are discussed in the Appendix. The
complicated task in this problem is to calculate the cou-
pling to the leads and to.solve for the nonequilibrium
occupation probabilities of all many-body states in the
quantum dot.

iA.l Rate equations

-To illustrate the rate-equation setup in the configura-
tion space notation we consider a limited system of only
two single-particle states (Fig. 2). There are four possible
configurations {ni,na} of electrons in the quantum dot:
{0,0}, {1,0}, {0,1}, and {1,1}. The respective eigenen-
ergies Ey, n,1 of these four states are 0, E1, E3, and
E,+ E;+ U, where U indicates the modification of the .
eigenenergy due to electron-electron charge interaction.
Figure 2(a) depicts the eigenenergy spectrum of this sim-
ple many-body system and its associated transition en-
ergies.

The transitions between these many-body states are
due to the tunneling to the adJacent leads as indicated in
Fig. 2(b). The excited state {0,1}, for example, is cou-
pled to three other states via five different processes. The
configuration {0,1} can be destroyed by (1) tunneling of
a second electron into state ny to create the {1,1} state
at a rate of I's fs, (2) tunneling of the n; eléctron into the
leads to create the {0,0} state at a rate I's(1— fz), and
(3) relaxation to the {1,0} configuration at a rate 1/7.
The configuration {0,1} can be created by (1) tunneling

. of an electron into state n, from the {0,0} configuration
- at a rate I'yf; and (2) tunneling of an electron out of

the ny state from the {1,1} configuration at a rate of
['3(1—f3). For legibility we have abbreviated, for exam-
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FIG. 2. Interacting two-particle system. (a) Eigenenergy
spectrum and transition energies. (b) Configurations {n:,n2} .
ordered vertically by their corresponding eigenenergy in (a).
Coupling between configurations depends on transition rates

T, availability of initial (f), final (1— f) states, and the nec-

essary transition energy (subscripts 1-4). 1/7 indicates the
intradot relaxation between configurations of constant num-
ber of particles.
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ple, Do fo=TL fE+TEfE, where I‘f(R) is the energy and
mode dependent single barrier tunneling rate through the
left (right) barrier. fZL ) is the probability of finding
an electron in the left (right) lead, which provides the
correct transition energy. Similarly we have abbreviated
T3(1—fs) =I5 (1-FF) +TF(1~f§), where (1—f™) is the
probability of finding an available state in the left (right)
lead. All other transitions with changing numbers of elec-
trons are similar, where we have indexed I'’s and f’s by
their appropriate transition energies Eq, B3, B3 =FE;+U
and By =FE>+U. Each configuration {n,nz} has an as-
sociated steady state occupation probability P({n,n2}),
which is a function of the coupling to the leads and the
quantum dot relaxation time. This picture described here
is identical to the one used by Beenakker!® to model lin-
ear response, except for the finite relaxation rate?® 1/7.
We reformulate the rate equations to make the treatment
of a significant number of states numerically feasible and
solve it for high bias.

The equations we actually solve provide no additional
physical insight to Fig. 2 and their discussion has been
deferred to the Appendix. Effects due to non-adiabatic
transport enter our treatment via the tunneling rates I",
which will be discussed in the next subsection.

B. Subband mixing: The model

We use the theory of multichannel quantum dot tun-
neling which we developed and employed previously
to study resonant tunneling through single dots with
abrupt connections,'>17 through dots with tapered
connections,'? and through coupled quantum dots.28 We
assume that the quantum dot nanostructure is a cylin-
der which is divided into separate regions for the emitter,
the barrier between the emitter and the dot, the dot, the
other barrier, and the collector. We assume that the
lateral confinement potential in each region is parabolic.
In each region the electron effective mass, lateral confine-
ment potential, and the conduction band edge are locally
constant. However, these parameters can change from re-
gion to region. To calculate the transmission coefficient
for single barrier tunneling into {out of) the quantum dot,
we propagate an electron incident from the emitter (col-
lector) through the connection, across the barrier, and
into the dot. Wave function boundary conditions are sat-
isfied at each interface between adjacent regions. Details
are given in Refs. 15 and 17.

Mode mixing is determined by how the lateral confine-
ment potential changes where the leads connect to the
dot. In previous work'® 1728 we have found that mode
mixing is qualitatively the same for abrupt or tapered
connections and we assume here that the connections are
abrupt to simplify the calculations. The overlaps

(Lmlr,q) = j de dy Bl bra (1)

between lateral states ¢; , (z,y) on adjacent sides of an
interface, j =1 (left) or j = = (right), with a set of lat-
eral quantum numbers ¢, determine which lateral modes
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mix at an interface and how strong the mixing will be.
If confinement is the same on both sides of the interface,
then (I, m|r,q) = dn q and tunneling is a single-channel
process. When the confinement is different in two adja-
cent regions, then lateral mode mixing at the interface is
possible.

When the quantum structure is cylindrically symmet-
ric, as in a vertical quantum dot structure with parabolic
confining potentials, the lateral modes in different re-
gions can mix only if the modes have the same lateral
(z-y) parity. There are four independent sets of cou-
pled channels [Fig. 3(a)] with even-even, odd-even, even-
odd, and odd-odd parity. We include the ground states
(0,0), (1,0), (0,1), and (1,1) and the first three excited
states for the first three parity groups. We have to leave
out the (3,1), (1,3), and (3, 3) states due to numerical
limitations (see Sec. IIC). The resulting single-particle
spectrum is depicted in Fig. 3(b). Note that each of these
indicated states is spin degenerate.

For our simple model the overlap matrix for z(y) mo-
tion is 2 x 2. To conserve probability, the matrix must
be unitary.’® A real, unitary 2 X 2 matrix has the form

(23)

\—v8)°

where |y] = (1—82)Y/2. If we specify 3, and B, for the
z and y overlaps, the total overlap matrix for the four
coupled modes can be determined. For cylindrical struc-
tures 3, = B, = . Thus a single parameter determines
the overlap matrix for a particular interface.

The strength f for the lateral mode coupling is de-
termined by the overlap between lateral states in adja--
cent regions. If the confining potentials are parabolic,
then the overlaps can be determined analytically. Even
if the confining potential is not exactly parabolic, the
parabolic approximation should give a good qualitative
estimate for the overlaps if the correct effective masses
and lateral level spacings are used to model the parabolic
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FIG. 3. (a) Subset of 16 lateral single-particle states
(ns,ny) composed of four allowed quantum numbers in each
dimension. Ouly states with the same z and y parity can
couple to each other, as indicated by horizontal odering and
connections with dashes. States (3,1), (1,3), and (3,3) are ex-
cluded in our calculation for reasons of numerical complexity.
(b) Lateral single-particle eigenenergy spectrum. Each quan-
tum state (nz,ny) is doubly spin degenerate. Grouping in
curly brackets { }: indicates degeneracy and equivalent cou-
pling to the leads; i.e., states in one group i are equally likely
occupied.



potentials. Estimates of 8 have been made for abrupt
constrictions.!® For parameters appropriate for the quan-
tum dot nanostructures, 8> 0.6. In these calculations,
we use [ as a parameter which we adjust in this range to
test the effects of mode mixing.

The tunneling rates I'Z(®) are calculated for the barrler

under bias. They depend on the modes and their mixing

as described above, and they depend on the longitudinal
energy through the barrier transmission coefficient: and
the attempt frequency in the well.?%:3? The longitudinal
energy dependence goes as (E—e )1/ , where F is the
total energy and €, is the transverse energy of mode
m. Averin et al.'* included only the energy dependence
of the tunneling rate through the emitter. The energy
dependence of the tunneling rate through the collector

is equally important when subband mixing is included -

and is especially important for asymmetric structures
where the current is:largely determined by the escape
rate through the collector barrler :

C. Implementation of rate equations

The rate equations as they were put forward by
Beenakker!3 use a notation that indicates the occupation
and vacancy in a Slater determinant state by a 1 and a
0, respectively. The solution of the rate equations be-
comes exponentially complex with an increasing number
of basis states, since 227 different configurations exist for
the maximum number of p spin-degenerate single-particle
states in the quantum dot, resulting in a set of 2%? cou-
pled equations (227X 2?P matrix). The problem simplifies
dramatically if certain assumptions about the occupa-

tion of states can be made. Beenakker!® has solved these -

coupled equations in the limit of linear response for the
analysis of periodic conductance oscillations, where the
states are assumed to be in local equilibrium.

In high bias, however, the electron distribution -is
driven far away from its equilibrium value. Averin et
al.l* have considered, in their high bias calculation; the
case of rapid thermalization (i.e., strong inelastic scat-
tering) in the quantum dot where the total number of
electrons in the dot at high bias can be far away from
its equilibrium value; however, the electron distribition
in the subset of constant number of electrons IV is given
by its equilibrium value. This assumption of rapid ther-
malization in the quantum dot simplifies the necessary
calculations significantly since only the nonequilibrium
number of electrons in the dot needs to be calculated.
The problem reduces from 22? to 2p unknowns. We make
this assumption of rapid thermalization in our numerical
work when we include inelastic scattering. However, in
the elastic case we solve for the probability of relaxation
of all configurations which is numerically a formldable
task.

Figure 3(b) indicates the structure of the smgle—
electron quantum states that we are simulating. Alto-
gether we are considering 13 spin-degenerate states.. The
number of all possible configurations of these 26 quan-
tum numbers in terms of an occupation number nota-
tion in a limited single-particle basis set of 13 states is
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22626.7x107. The setup for a solution for all of the occu-
pation probabilities would therefore result in a matrix of
dimension 226 x 226, However, many of the lateral states
are degenerate in energy and have equivalent coupling to
the leads. This degeneracy can be used to reduce the
number of equations that need to be solved.

To illustrate this degeneracy of states let us consider
single-particle lateral states characterized by two lateral
quantum numbers (71, ny). Figure 3(b) shows the single-
particle spectrum grouped by degenerate states and com-
plementary parity. Each element in one group of states,
e.g., {(1,0);(0,1)}2 is coupled to other single-particle
states, e.g., (odd, even)—(1,0}—(3,0)—(1,2)—(3,2) and
(even, odd) — (0,1) — (2,1) — (0,3) — (2,3), as indicated
in Fig. 3(a). These coupled single-particle states form
again distinct groups {(2,1); (1,2)}s, {(3,0); (0,3)}s, and
{(3,2);(2,3)}s. Since the elements in the groups are de-
generate and the coupling of elements in different groups
is determined by the group label, each of the single-
particle states in one group have the same probability to
be occupied. Instead of calculating 26 occupation prob-
abilities (13 states X 2 spins) we only need to calculate 8
probabhilities.

. This. grouping of states can also be utilized. for the
many-body state notation as explained in the Appendix.
We can assume our system to have five four-fold degen-
erate and three two-fold degenerate states with a config-
uration space of 5% x 3% = 84375. We can solve a sys-
tem of equations of this dimension®-32 using iterative
methods,3® if we can provide a “good” guess for the so-
lution. We defer the report of the rate equations, which
utilize the degeneracies discussed above, and how we ob-
tain an initial guess for the solution to the Appendix.

III. NUMERICAL RESULTS

In this section we present our results obtained for a
multielectron quantum dot system under high bias. We
consider two example systems here: an asymmetric and
a symmetric structure in which we analyze the effects of
nonadiabatic transport, electron-electron charging, and
inelastic scattering.

A. Example device

The device we consider here is an undoped Al,Ga; . As
double barrier resonant tunneling structure (Fig. 1),
which is sandwiched between lightly doped spacer layers
and heavily doped contact layers. The transverse con-
finement changes in the longitudinal dimension due to
the change of doping and the associated charge depletion
along the growth axis of the diode. The single-particle
energy spacing in the quantum dot, barriers, and leads is
assumed to be 15, 16, and 10 meV, respectively. A Fermi
energy of 38 meV populates the three lowest subbands in
the leads. The conduction band floats up in the central
region of the device due to the lack of doping Vioas = 50
meV. The well region is assumed to be In, Ga;_,As with
a conduction band offset of ‘E,g = —50 meV and thick-
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ness of 60 A similar to the Reed!® structure. We have
estimated the energy quantization in the longitudinal di-
rection to be 60 meV and 245 meV for the first two states
with our Green’s function simulator QUEST.3* Since the
energy separation of these two longitudinal states is much
larger than the assumed lateral state quantization, we
will neglect the second longitudinal state completely.

We assume that the single-particle state separations,
AE =15 meV are larger than the charging energy, U=1.5
meV. This allows us to use the simple charge interaction
model (see Appendix A 3). Barrier thicknesses and Al
fractions®® are chosen such that the single-particle lev-
els can be assumed to be sharp compared to the tem-
perature, charging energy, and single-particle spectrum
(AE,U>kpgT>HhT’) in order to use rate equations in the
sequential tunneling picture.

B. Inelastic scattering, charging,
and subband mixing treated independently

Let us first look at the consequences of the three phe-
nomena (inelastic scattering, charging, and subband mix-
ing) independently in this complicated electronic system.
For these examples we consider an asymmetric structure
with left/right barrier thicknesses of 105 A/80 A and
an Al fraction of 0.35/0.30 corresponding®® to a barrier
height of 262/224 meV.

‘We use the calculation for elastic, adiabatic, no charge-
interaction transport as baseline (thin line in Figs. 4-6)
for comparison against the independent inclusions of in-
elastic scattering (Fig. 4), charge interaction (Fig. 5),
and subband mixing (Fig. 6). The arrows marked z-y
in Fig 4 indicate the voltage ranges over which subband
z in the emitter can conduct adiabatically into quantum
state y in the quantum dot. z and y correspond to sub-
scripts indicating the groups of single electron states in

60
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FIG. 4. I-V characteristic for an asymmetric structure. Ef-
fects due to thermalization (thick line) compared to the elas-
tic, adiabatic, single-particle result. Arrows labeled 1-1, 2-2,
3-3, and 4-4 indicate the regions of allowed adiabatic, elastic
subband-to-quantum-state transitions (thin line). Electron
relaxation wipes out features and increases the current in the
“valley current” region where channel 1 has shut off already.
The inset shows a two-state model indicating vertical flow
into elastically decoupled level 1.

Fig. 3(b). Without subband mixing three®® occupied
subbands in the emitter couple to their corresponding
lateral states in the quantum dot and three distinct cur-
rent steps are observable in the I-V characteristic. Note
that the 3-3 transition is turning on when the 1-1 transi-
tion is already turned off due to (1) the different energy
separations of the subbands in the leads (10 meV) and
the single-electron states in the quantum dot (15 meV)
and (2) the finite Fermi energy in the leads. We define
the valley current region as the voltage region extending
past the turnoff of the first transition (see Fig. 4).

The introduction of inelastic scattering in the limit of
complete thermalization (kT > A/7 > I') (thick line
in Fig. 4) shows an increased current due to coupling of
lower lying, elastically decoupled channels. The turnoff
of the 1-1 transition, for example, introduces a decrease
in the current in the elastic calculation (arrow a); how-
ever, electrons tunneling into the quantum dot in a 2-2
transition can relax down to level 1 in the quantum dot
(see inset in Fig. 4). Level 1 is therefore filled “from the
top” via an inelastic channel. The current is increased
due to this additional channel?®3° and the turnoff fea-
ture of the 1-1 transition is wiped out. The effect of
filling of a lower lying level depends strongly on ratio of
the rate of outflow to the collector versus inflow from the
emitter.21:29:30 Tt can be shown analytically?! for a two-
state system that a large asymmetry I'l < T'® (with the
bias such that the electron flow is from right to left), the
current effectively doubles to a two-channel result. For
I['2 =TT the current enhancement due to inelastic scat-
tering is 60%. For 'Y > I'E, the current enhancement
is small and the current remains basically carried by one
channel.

Figure 5 shows the effects of single-electron charging in
the elastic limit (1/7=0). Steps reflecting the charging
energy scale U are introduced. The spin degeneracy of
the first level [1%w in Fig. 3(b)] is broken® (arrow 1). The
step from the single-particle turnon (arrow 2) consisting
of four degenerate states [2fiw in Fig. 3(b)] is broken into
four steps starting at arrow 3. A factor of 2 enhance-
ment of the total current at a bias where six electrons
are in the quantum dot ({(N) < 6) at arrow 4 compared
to the current level at arrow 2 where we also have six
electrons in the quantum dot ((IV) $6) is due to an in-
creased transparency of the collector barrier in the pres-
ence of charging. Since total energy is comserved in the
tunneling process, an increased energy due to charging al-
lows coupling to higher energy states in the collector and
therefore increases the collector barrier transparency.

Notice that there is a hint of a step at about 120 meV
which is due to the addition of a single-particle channel
[see Fig. 3(b)] into the quantum dot. In the asymmetric
structure the amplitude of the current is mostly deter-
mined by the (almost) quantized number of particles in
the quantum dot and the tunneling rate out of the quan-
tum dot as long as one single-particle channel into the
dot is available. The addition of an entry channel given
the presence of some other entry channels does therefore
not increase the current strongly.?® By the same argu-
ment we do not find a characteristic turnon due to the
third single-particle level [3%w in Fig. 3(b)] in the case of
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charge correlation compared to the smgle—partlcle result
(arrow 5).37

The current calculated including charge correlation
does not turn off sharply as single-particle state 1 is
turned off. On the contrary, the valley current is in-
creased strongly by charge correlation. The origin of
such current increase can be understood in a simple two-
state model indicated in the inset of Fig. 5. Given a bias
where state 1 is pulled under the conduction band edge
of the emitter, only state 2 appears to be available to be
tunneled into in a single-electron picture. However, an
electron “residing” in state 2 changes the single-particle
excitation spectrum significantly and may “lift” unfilled

level 1 into an energy range in which tunneling is al- .

lowed. If state 2 is occupied long enough, state 1 will fill
and two electrons are “waiting” to tunnel to the collec-
tor, corresponding to two transmission channels. We can
show analytically?! that the current enhancement for the

inclusion of single-electron charging in' the two-state ex-
Tyo—Tu=0 __ ZI‘LI'R+I"‘;2
Tums 2T +42T T Rp+T%°

ample at this bias is 6 =

an asymmetry I't < T'p (collector barner larger and/or-

thicker than emitter barrier), we have an enhancement
d~1-2 (P ) —1=100% correspondmg to two channels

Even for U'r =Tz, we have an enhancement § = £ =60%
over the noninteracting result. The current enhancement
given very leaky conditions I'y, >T'g is §~ —P= —0.
Figure 6 depicts the simulation result mclLudmg weak
subband mixing of strength 3=0.95. The labels. z-y in-
dicate the additional channels due to tunneling from sub-
band z in the emitter to state y in the quantum dot as
with the corresponding labels (1 — 8) in Fig. 3(b).  The
inclusion of subband mixing extends the voltage region of
conductance significantly and the I-V characteristic ex-
hibits an additional structure®? due to the modes in the
leads and quantum dot. Current conservation demands

60 - K
50 ' -
?-,40
?g’so ‘
o} /5

N
(=)

3 | Valley

10 ——with charging|
0 . . |——no charging
80 100 120 140 160
Applied Voltage (rnV)

FIG. 5. I-V characteristic for an asymmetric structure. Ef-
fects due electron charge correlation (thick line) compared to
the elastic, adiabatic, smgle-partlcle result (thin lme) State
degeneracy is broken (arrows 1 and 3) and the turnon of the
second single-particle level is impeded (arrow 2). The current
is increased in the valley current region (arrow 4). The inset
shows a physical picture of the enhanced valley current due
to electron-electron correlation. There is no explicit turnon
of level 3 (arrow 5). The underlying single-particle spectrum

cannot be identified.
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FIG. 6. I-V characteristic for an asymmetric structure. Ef-
fects due to subband mixing (thick line) are compared to the
elastic, adiabatic, single-particle result (thin line). Subband
mixing increases the voltage-region of the current flow. Fea-
tures due to turnons and turnoffs of quantum states in the
dot and subbands in the leads are exposed. The notation of
new channels -y is the same as in Fig. 4. The unitarity con-
dition. on the scattering matrix causes reduced current flow
through direct channels (arrow a) due to the opening of other
scattering channels.

that the scattering matrix which couples subbands and
quantum states in the dot to be unitary (see Sec. IIB).
Opening new scattering channels reduces the strength of
the direct channels, resulting in a smaller current contri-
bution from the direct channels (arrow a). These calcu-
lations were performed for an asymmetric structure and
they show clearly that, although the current through an
asymmetric structure may be dominated by the collector
barrier transmission rate, the addition of entry channels
on the emitter side can increase the valley current dra-
matically, when the direct channels start to turn off.

In the following two subsections we will now put
the three transport phenomena—(1) elastic vs thermal-
ized transport, (2) noninteracting vs interacting trans-
port, and (3) adiabatic vs nonadiabatic transport—
together piece by piece and explain their general effects
on asymmetric and symmetric structures. For the asym-
metric structure we start from Averin, Korotkov, and
Likharev’s!* analysis of adiabatic, thermalized transport
through a charge interacting quantum dot and show how.
the inclusion of nonadiabatic transport phenomena and
the exclusion of inelastic scattering in the quantum dot
will alter the high bias I-V characteristic dramatically.
For the symmetric structure we start from Bryant’s!® 17
analysis of nonadiabatic transport in symmetric struc-
tures and add charge correlation and inelastic scattering.

C. Asymmetric structure

Averin et al.'* have assumed adiabatic coupling from
1D subbands in the leads to 0D states in the quantum dot
for the lowest longitudinal energy level in their high bias
transport analysis. They assumed that the electrons are
in the quantum dot long enough to suffer inelastic scat-

tering processes and calculated the canonical ensemble
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average. We start our analysis for asymmetric structures
from this picture. However, note that in our case we
assume that the Fermi energy Er is the same order of
magnitude as the subband separation AE such that only
few subbands are occupied in the leads (Fig. 1). This
assumption allows us to analyze the effects of subband
mixing and corresponds to doping levels similar to the
structure by Reed et al.1° in which subband mixing is in-
deed important. %17 Another difference in our analysis is
that we keep the energy dependence of the collector bar-
rier transmission rates, which makes the collector barrier
more leaky at higher biases and reduces the charge accu-
mulation. Also we do not include effects due to bistability
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FIG. 7. I-V characteristic for an asymmetric structure. We
start with Averin, Korotkov, and Likharev’s (Ref. 14) “pic-
ture” of inelastic, adiabatic transport with and without sin-
gle-electron charging and show effects due to the inclusion of
subband mixing and the exclusion of inelastic scattering. (a)
Single-electron charging: Single-electron charging (thick line)
introduces fine structure in the I-V characteristic and breaks
single-particle state degeneracy (arrows 1 and 2). (b) Include
nonadiabatic transport: Thick line in (a) is now thin. Sub-
band mixing (thick line) increases the region of current flow.
Features due to single-electron charging (~2xU=3 meV are
dominant. Single-electron particle spectrum (see Fig. 6) can-
not be identified. (c) Exclude inelastic scattering: Thick line
in (b) is now thin. Fine structure due to the single-particle
spectrum is exposed (see Fig. 6). Inset: The I-V characteris-
tic for a reverse bias measurement where the thick barrier is
now the emitter barrier. The I-V characteristic is determined
by the single-particle spectrum (AE).
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here as discussed in the Appendix.

The asymmetric double barrier structure analyzed here
is the same one as considered in the previous examples.
The thin line in Fig. 7(a) is the thick line in Fig. 4 given
strong inelastic scattering, no charging, and no subband
mixing. Now we add charging to the simulation to obtain
the thick line of Fig. 7(a). This thick line of Fig. 7(a) is
almost identical to the thick line of Fig. 5. Single-electron
state degeneracies are broken {(arrows 1 and 2) by the
charge correlation and no explicit turnon of the third
quantum level is visible (arrow 3) as discussed above.
The fact that the two current amplitudes to the right of
arrow 3 are nearly equal is coincidental.

Is subband mixing important in asymmetric struc-
tures? In Fig. 7(b) we add weak subband mixing (8=
0.95) to the result shown in Fig. 7(a) and we effectively
combine the results of Figs. 4-6. Figure 6 has shown
that subband mixing increases the voltage range of con-
ductance and Fig. 5 has shown that charging increases
the current in the valley current region. Both of these
effects are strikingly evident in Fig. 7(b).

Does inelastic scattering play a role in asymmetric
structures? Fig. 7(c) compares the I-V characteristic
without inelastic scattering (1/7 = 0, thick line) to the
one shown in Fig. 7(b) with complete thermalization
(1/7 > T, thin line). Inelastic scattering (thin line) ef-
fectively couples lower lying quantum levels, which are
not coupled elastically to the emitter lead in the valley
current region.?%:3% The I-V characteristic appears as an
almost monotonic staircase. The exclusion of inelastic
scattering (thick line) exhibits structure due to the single-
electron spectrum in the valley current region (arrows
labeled AFE) and the current is significantly reduced as
levels fall under the conduction band edge of the emitter.
The two limits of thermalized and elastic (1/7=0) trans-
port give dramatically different results in forward biased
asymmetric structures. A reverse bias measurement [see
the inset of Fig. 7(c)] of an asymmetric structure will
exhibit the single-particle spectrum only since there is
no charge accumulation.® If single-particle features can
still be found in the forward bias direction we have an
indication that the relaxation in the quantum dot is not
very fast compared to the collector barrier escape rate.
If all the single-particle features disappear, we have an
indication that the relaxation rate is large.

D. Symmetric structure

Is there single-electron charging? While single-particle
quantum states in resonant tunneling diodes have been
observed!® in symmetric structures, there is no evidence
for single-electron charging effects in such structures.
The supporting argument for the missing effects due to
single electron charging is that the collector barrier is ef-
fectively lowered due to the applied bias and that there is
no charge accumulation to introduce effects due electron-
electron interaction. However, the effect of the effective
collector barrier lowering can be decreased if the barrier
heights are raised. If then collector and emitter barrier
transmission rates are of the same order of magnitude,



an average filling of a quantum state is $1/2. This wilt
modify the transition energy spectrum of the quantum
dot and will leave an observable effect in the high bias I-V’
characteristic. Another requirement*®'* (U>kpT >AT")
that is necessary for the observation of smgle electron
charging effects has also not been satisfied in the sym-
metric Reed!® structure. We have estimated the ener-
getic spread of the quantum states due to the coupling
to the leads to be of the order of several meV, which
is about the same order of magnitude of possible charg-
ing energies involved with single-electron charging. We
therefore cannot expect to observe single-electron charg-
ing effects. By the choice of thick barriers we can ensure
that we can satisfy the condition U >kgT > Al for all
possible transitions into and out of the quantum dot.
We analyze here the double barrier structure depicted
in Fig. 1 with equal barrier thicknesses of 80 A and Al
fractions of 0.35 corresponding3® to a barrier height of
262 meV. Figure 8(a) depicts an I-V characteristic that,
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FIG. 8. I-V characteristic for a symmetric structure. We
start with Bryant’s (Refs. 15-17 “picture” of coherent trans-
port with and without subband mixing and extend the model
to include single-electron cha.rgmg and. inelastic scattering.
(a) Adiabatic vs nonadiabatic transport The voltage region

of current flow is extended due to subband mixing $=0.95

(thick line). (b) Include charging: Thick line from (a) is now
thin. FElectron-electron charging introduces features in the

I-V characteristic even for symmetric structures. (c) Include .

strong inelastic scattering: Thick line from (b) is now thin.
Electron relaxation in the quantum dot has only small effects
on the I-V characteristic. The current is increased on the
turnoff side of the peaks (arrow 1) and reduced on the turnon
side (arrow 2).
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Bryant!®17 could have obtained in his analysis of coher-
ent, elastic transport through double barrier structures.
Even weak subband mixing (6=0.95) modifies the overall
IV characteristic significantly by extending the voltage
region of transport. Calculated modifications of this high
bias characteristic due single-€lectron charge interactions
are depicted in Fig. 8(b) using a charging energy of U=1.5
meV. There are clearly additional steps of the energy
scale of 2U introduced due to single-electron charging.

" Does inelastic scattering play a role in symmetric struc-
tures? Figure 8(¢) compares the simulations for perfectly
elastic (1/7=0) and thermalized transport in the presence
of electron charge interaction and subband mixing. The
thick line from Fig. 8(b) is now thin. The relative am-
plitudes (arrow 1) of some current peaks have changed
due to the opening of new channels in the valley cur-
rent. Current is slightly reduced?! due to inelastic-scat-
tering on the rise part of the I-V. characteristic (arrow 2).
However, effects due to inelastic scattering in the quan-

" tum dot in the case of symmetric structures -appear to

be small. The two calculations for the extreme cases of
elastic and thermalized transport do give slightly differ-
ent restlts, but an experimental détermination whether
transport at high bias is elast1c or thermallzed seems in-
feasible. : :
Conclusion for symmetmc structures.”  Our ana1y51s
shows that single-electron charging will have effects on
the high bias I-V characteristic of symmetric double bar-
rier structures, provided the barriers are thick and/or
high enough. In the limit of strong confinement where
AE > U we expect-the I-V characteristic to be dom-
inated by the single-particle spectrum. Superimposed
on this spectrum we expect fine structure due to single-
¢lectron charge correlations. Devices built in this param-
eter range would allow the clear separation of charging
and quantum effects. Effects due to inelastic scattering
within the quantum dot appear to be weak. Since the as-
sumption of thermalization in the quantum dot simplifies
the problem dramatically numerically (speedup of a fac-
tor of about 10 000) and since it does include the relevant
effects of charging and subband. mixing, now, it appears
to be the solution of choice for simulations of symmetric
quantum dots with large and/or thick barriers.

IV. CONCLUSIONS

‘We have presented numerical results’which explaiﬁ the
roles of inelastic scattering, single-electron charge inter-

“action and nonadiabatic coupling to the leads in the
" transport through a quantum -dot.

- All three of these
effects increase the valley current of the I-V character-
istic compared to the noninteracting, adiabatic, single-
particle analysis. We have tied two approaches together
in‘our analysis: (1) nonadiabatic transport analysis in the
elastic, no charge interaction limit**™*7 and (2) inelastic,
charge intéraction analysis in the adiabatic limit.13:14 We
have analyzed numerically devices where the Fermi en-
ergy is comparable to the lateral state spacing. Nonadi-
abatic transport increases the voltage range of transport
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through symmetric and asymmetric structures and ap-
pears to be very significant if the lateral confinement is
strong and only few subbands are occupied. In sym-
metric structures effects due to single-electron charg-
ing have not been observed experimentally. However,
we show that additional steps in the I-V characteristic
should be observable even in the case of weak charge ac-
cumulation, provided the barriers are thick and/or high
enough. The inclusion of inelastic scattering within the
symmetric quantum dot does not introduce significant
changes in the predicted I-V characteristic. Transport
through asymmetric structures is shown to be dominated
by charge accumulation in one bias direction. Also the
treatment of inelastic scattering in the forward biased
asymmetric quantum dot modifies the predictions of high
bias transport dramatically. Weak inelastic scattering ex-
poses the underlying single-particle spectrum in the val-
ley current region and the I-V characteristics may give
insight into the strength of the inelastic scattering in the
quantum dot by comparison of forward and reverse bias
measurements.

Note added in proof. A. N. Korotkov brought Ref. 43
to the attention of G.K. in which the authors had com-
pared effects due to small and large relaxation rates as
discussed in this paper. The results presented in Ref.
43, however, are in a different limit of metallic granules
in which the charging energy is large compared to the
single-electron spectrum (U > AE). In this limit cer-
tain assumptions about the occupation of the states in
the granule are possible, which simplify the numerical
task to calculate the occupation of the states significantly.
Reference 43 concentrates on the turn-on region of the I-
V' characteristic, whereas we concentrate on the effects
of elastic and inelastic scattering in the valley current
region.
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APPENDIX: RATE EQUATIONS

In this appendix we will present the rate equations
used in the numerical simulations and discuss the origin
and the limitation of the constant charging model.

1. Rate equations for degenerate states

In Sec. ITA we have explained, using Fig. 2, the gen-
eral idea of the configuration space and the coupling be-
tween the configurations. This approach has been put
forward by Beenakker!'® for the treatment of Coulomb
blockade problems. In Sec. IIB we discussed the single-
particle spectrum that we are considering in this work
and argued in Sec. IIC how the multiple degeneracy of
the quantum states should be exploited to reduce the
number of possible many-body configurations. We use
Beenakker’s model for nondegenerate states and extend
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it to multiple degeneracy and include a finite intradot
relaxation time.

We are using a constant charging model with a single-
electron charging energy4 of

2

t?(N)=;—C Xx N(N-1)=U x N(N-1) , (A1)
where N is the total number of electrons in the quan-
tum dot and C is the electrostatic charge coupling of
the quantum dot to the reservoirs. Beenakker assumed
a charging energy of the form U (N) = N 22325, which
is a good approximation for the case large N. We as-
sume here that the first electron does not have a charg-
ing energy against the reservoirs.!* The coupling to the
leads is assumed to be weak enough such that the single-
electron states in the quantum dot are considered to
be sharp compared to the temperature kT, the single-
electron energy spectrum AFE, and charging energies U/
[AE,U>kT >Rl =A(Tg+Tr+1/7)].

The transport through the quantum dot is assumed
to be based on sequential single-electron hopping into
and out of the quantum dot via the connected reser-
voirs. The energy of each electron before and after the
transition must be conserved. The conserved energy in-
cludes the single-particle state energy, the charging en-
ergy against the other electrons in the quantum dot, and
the electrostatic potential energy due to the applied bias
across the structure. Beenakker'?® has denoted four en-
ergy balance equations for the following four tunneling
processes: (1) into the quantum dot that is initially on
the left (index i,L), (2) out of the quantum dot to be
finally on the left (index f, L), (3) into the quantum dot
that is initially on the right (index i, R), and (4) out of
the quantum dot to be finally on the right (index f, R).
The energy balance equations corresponding to these pro-
cesses are

BN =Ep+UN+1) —U(N) +neV , (A2a)
EIE =B, + O(N)— U(N—-1) +neV , (A2b)
Egn =E, +UWN+1) -U(N) - (1-m)eV , (A2)
ElR=E,+UN)-U(N-1)— (1-n)eV , (A2d)

where N is the number of electrons in the dot before
the tunneling event and 7 is the fraction of the applied
voltage that drops over the left barrier (compare to Fig.
1 of Ref. 13). E, is the single-particle eigenenergy of the
quantum level p.

The usual®®?3 notation for many-electron Slater deter-
minants is formulated in terms of Fermi particle annihi-
lation and creation operators. Given, for example, two
spin-degenerate quantum states the Slater determinants
are usually denoted as {niy,nyy,ne4,na;) where the n;
can take on only values 0 and 1. For this particular ex-
ample with a maximum of four fermions in a limited basis
set of four states we have 2% =16 possible Slater determi-
nants. Here we are interested in the average population
of these Slater determinant states, given that they are
weakly coupled to two leads. The system of equations to
be solved for is of dimension 16 x 16. Several of these 16
states are equally occupied if the coupling to the leads is
spin independent (for example, ]1,0,0,0) and |0, 1,0, 0)).
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FIG. 9. Example of a compression of nondegenerate to de-
generate state notation. Orbitals (n11,n1y) and (nar, n2y) are

each assumed to be spin degenerate with spin-independent -

coupling to the leads. The configuration {mi,m2} has
my = nip+nyy and mz = ngy +nzy with the configuration
degeneracy C as indicated above the arrows. Sixteen configu-
rations are converted to nine. We use this scheme to convert
the 22¢ = 6.7 x 10° nondegenerate configurations for 26 elec-
trons (Fig. 3) to 8.4x 10* configurations in the degenerate
notation.

Pigure 9 depicts all 16 states and groups them according
to equal occupation probability. Instead of the 16 un-
knowns, only nine unknowns have to be calculated. We
introduce notation for these nine groups, in which we
simply count the number of electrons in the degenerate
subgroup, as indicated in the example in Fig. 9. The nine
possible configurations are now described by two numbers
{my, mz}, where mj =ny4+ny) and ma=nzp+nzy. Each
“state” m; and my is twofold degenerate and its index

can take on values 0, 1, and 2.
J

N, group’

[=—¢ Y D({ma}) P(tm}) Z & mp>r;€v i —m ik (1- %)

{me} p=1

- reduction.
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‘While the reduction from 16 to 9 configurations does
not appear significant, larger systems show a dramatic
Including lateral state degeneracies [see
Fig. 3(b)] as well as the spin degeneracies (see Fig. 9)
we can compress our system to five fourfold and three
twofold degenerate groups. We denote the degeneracy of
each state as d, and the index m, can take on values
{0,...,d,}. We reduce our system from 2%¢=67,108,864
to Hp s2ue (g, +1) = 55 x 3% = 84375 (Ngroup = 8 in our
case; see Fig. 3), which is a reduction by a factor of about
800. To keep track of the multiple degeneracies we have
introduced the configuration degeneracy D, as indicated
in Fig. 9. In the example in Fig. 9 the configuration
degeneracy takes on values 1, 2, and 4, depending on
the conﬁguration {m1,my}. The configuration degener-

acy D{mi,ma,...,MnN,,...} can be formally defined as a
d,!

product of bmomlal coefﬁments PC’ = )t

Ngroup‘
D({mk}) = H demp ) (A3) A
p=1 ’
where we use the short form {m} = {my,ma,...,my,

CyMN ot a0d mp€{0,---,dp}.
leen the probability of occupation of each configu-

ration P({m}) and a Fermi-Dirac distribution in the

-1
£= EF , the steady state

reservoirs of f(E)= [1 +exp (

current through the left barrier (Wlnch equals the current
through the right barrier) is given by

(Ad)

where m,, is the number of electrons in group p and Ngroup is the number of quantum levels considered. The tunneling
rate I and lead state occupation probability f carry four indices indicating the energy dependence of the transition as
indicated in Eq. (A2). The index p on T is also used.to keep track of the lateral mode dependent i.e., state dependent,

coupling to the subbands in the leads.

The rate equations for the nonequilibrium occupation probability P ({mz}) including the degeneracy read

0= EP ({me}) =
= P}y mp {TE

sy Mp1,Mp

+) (..
~D({mi}) P({mk});Po({mk})

—l,mp+1,. ..

‘We have argued in Sec. IT A that each state {mz} with
n electrons is connected to other states by five basic pro-
cesses and we repeat them here for the more general case:
(1) destruction of {m} by inflow of electrons, (2) de-
struction of {m;} by outflow of electrons, (3) creation of
{ms} by destruction of a state with (n+1) electrons, (4)

—ZP({""’?}) (dp—myp) {Fz;,jfvf L
P
[1—]‘1{:1{;] —|—I‘£:f, [1_]:1{,11\.—;]} :

+ S0Pyt Mt L, ) (dp—mp) {Thkeyy [1=f1e] +
p

V{mk} .

i, R R
+FP,N f N

p N+1 [ fp N+1]}

i,R i,R
) myp {rp N—1 pN—l '*'F , N—1 pN—l}

(A5)

!crea.tion of {my} by destruction of a state with (n—1)
electrons, and (5) destruction of {ms} due to relaxation.
These five processes are reflected in that order in the five
contributions in Eq. (A5). The set of equations (A5) con-
tains Hp 57" (dp+1) equations for the same number of
unknowns. However, one of the equations is a linear com-
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bination of the others and the system is underdetermined
by one equation. The normalization of the probabilities
to 1 closes the system:

> D{E{mu}) P({mi}) =1.
{mw}

(A6)

D({m}) exP(
Po({ms}) =

> Epym, / k3T>
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Equation (A5) is equivalent to Eq. (2.12) in Ref. 13 ex-
cept for the phenomenological intra quantum dot relax-
ation and the degenerate state notation. The canonical
probability distribution Po({m:}) depends on the free
energy of the internal degrees of freedom with a fixed
number of electrons in the quantum dot and the proba-
bility to have that particular number:

P(N) . (A7)

{ox}

The probability P{N) represents the probability to have
a total number N electrons in the quantum dot regardless
of electron configuration. It is the sum of all configura-
tions with the total number of N electrons:

P(N)= 3 D({m}) P({ms}) bn,5, m, -
{m}

(A8)

The introduction of the relaxation rate couples all config-
urations with the same total number of electrons N with
each other, since Po({m}) depends now on all configu-
rations with NV electrons.

In order to solve this large system of equations itera-
tively®® we need to find a “good” guess for a fast solution.
We obtain our guess for the most likely configuration by
looking at the diagonal elements of the matrix. The diag-
onal elements indicate the leakage of the corresponding
configuration to other configurations. The configuration
with the smallest leakage rate to other configurations is
the most stable one and will be the most likely one to oc-
cur. We use this physical argument to justify our initial
guess of the probability distribution and achieve satisfac-
tory convergence in the iterative procedure.

2. Strong inelastic scattering

Beenakker!® has given equations for the nonequilib-
rium number of electrons in the quantum dot similar to

o0

ZD({ok}) exp (Z E'pop/kBT> ON,5,0p

=1

Z(SNYZi‘""i (1_5”"17’0) D({mk}) €Xp Z Eimi/kBT

()
Feq(Bp|N) = == '

Averin et al.1* We continue to use the same notation and
extend Beenakker’s!® Eq. (5.1) to multiple degeneracy.
The modified equation of detailed balance reads now

P(N+1)T™(N+1) = P(N)I'™™(N) ,  (A9)
with
Ngroup
TN +1) = Y Feg(Bp|N+1)
=1
¥ )L
X{F;,JI\;'+1 [l_f f,N+1]
+I‘z{:11\zr+1 [1_fzi’11\3+1:|} ) (A10)
. Ngroup
'™(N) = Z [dp— Feq(Ep| V)]
p=1
«[ren sk +TiRAE] L aw

where F.q(E,|N), the equilibrium probability of finding
state p occupied, given that IV electrons are in the quan-
tum dot, is defined as

N, group

g=1

> On,xm: D({mu}) exp

{ms}

The set of N equations (A9) for N +1 unknowns is
closed by the normalization condition:

Niotal

Y PN)=1 .

N=0

(A13)

(A12)

N, group

Z Eim,;/kBT

=1

[
After solving for P(N) with Eqgs. (A9) and (A13) we use
Eq. (A7) to determine P({m}) with the assumption of
thermalization [P({m})=Po({m+}) | and evaluate the
current through the structure using Eq. (A4).

Equation (A9) can be interpreted as a recursive re-
lation'* determining the filling of a (IV + 1)-electron
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state based on the realization of an. N-electron state:

P(N+1)_f§%§l I Ti®(N =0)=0 then P(N=1)=0

and all subsequent P(XN >1)=0. The in-tunneling rate
"2 (IV =0) is indeed zero if all single-particle states are

pulled under the emitter conduction band (see the in--

set in Fig. 4 or 5). Consequently the current transport
through the quantum dot shuts off at the same bias as if
there were no charging {see Figs. 5 and 7 ( )] and the aver-
age number of electrons in the quantum dot (V) changes
abruptly from a finite value to zero. )
If each bias point in a I-V characteristic is consid-
ered to be a perturbation of an infinitesimal smaller bias
point, then the average number of electrons in the quan-
tum dot could be expected to change only infinitesimally.
If another boundary condition for the average number of
electrons (V) #0 is introduced into the system of equa-
tions, then the system becomes overdetermined in the
case of T'®(N) =0 and I'""(N +1) # 0 for any N. The
recursive Eq. (A9) could be thought of as being solved
from large values of N down to smaller values of N:

P(N)= —lﬂ"'—%.?%l—v—ﬂl Equations involving Tin(N) =0

cause the recursive chain to end and the associated prob-
abilities P(IV) are ill defined. If these probabilities P(IV)
are set to zero, a second bistable solutlon with (N ) #0
can be found.

Effects of bistability have been d1scussed‘by Averin et
al.1* We have included possible bistability into our model
in the scheme discussed in the preceding paragraph and
found that the inclusion of subband mixing washes out
effects due to bistability in the voltage range discussed in
this paper. This is due to the effect that I**(N =1)#0
even for high biases, since the single-particle levels are
not decoupled until the highest single-particle state is
pulled under the emltter conduction band edge. This bias
range would be even increased further if optlcal phonon
scattering would be included as discussed in Refs. 29 and
30. We_do not include our results on bistability here
since they have been discussed by Averin et al.'* in detail
already. -

8. Constant charging interaction .

Several calculations of the many-body eigenenergies of
quantum dots have been performed.?2-27:3%:41 The crit-
ical ingredient in these calculations is the form of the
electron-electron interaction potential and. the cited ref-
erences differ in their choices of this potential. Many-
body spectra. using the unscreened??22 Coulomb poten-
tlal e Vere analyzed first and strong spatial electron-
electron correlations were found in the case of compara-
ble interaction energy and single-electron quantum state
spacing. The many-body ground state has significant
contributions of excited single-particle states indicating
how electrons arrange themselves spatially to reduce the
charging energy in this limit. Hausler and Kramer?® have
used an interaction potential of the form (IT-:HWZ—
in their quasi-one-dimensional calculation andpointed
out limitations of the state independent charging model.

Johnson and Payne?*3° introduced a modified interac-

‘tions.
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tion potential of parabolic form which mimics the satura-
tion of the interation potential for small distances. The
problem_bec_omes exactly solvable and its results have

" been shown to be comparable?® ‘to the Coulomb poten-
- tial interaction in the limit of strong confinement.

The purpose, of this section is to relate the state
independent charging energy to a microscopic calcula-
Starting from there we argue*? similar to a
discussion in Ref. 22 that the simple charging: model
may give reasonable results for structures in which the
single-particle quantization energy is the dominant en-
ergy scale. Figure 10 depicts®® the forms of the three
investigated electron-electron potentials: Coulomb, mod-
ified Coulomb, and parabolic potential. If the region of
confinement is small and screening by spatially closely
located ground planes is reasonable to assume, then a
constant interaction potential as indicated by a horizon-

-tal line in Fig. 10 may be a reasonable assumption.

Starting with the-definitions of one- and two-electron
ntegrals over spin and spatial orbitals in Ref. 38 on p. 68,
we substitute the two-electron operator r;l bya spatla]ly
independent constant U and calculate the N-particle
Hamiltonian matrix on the basis set of N-particle Slater

‘determinants. The choice of orthonormal single-particle

basis set for the generation of the N-particle Slater deter-
minants and the spatially independent electron-electron
interaction potential allows an easy analytic calculation
of the Hamiltonian matrix elements. The Hamiltonian
maitrix turns out to be diagonal and with an expression
for a N-particle Slater determinant denoted in' configu-
ration space as {n;}={n1,n2;...,n,} we obtain, for the
diagonal elements, Co

. ., '
Epgy = Z,Ei5n,.,1 + 5NN -1, (A14)

where E; is the single-particle eigenenergy of the 7th spin
orbital and N=3 %2, n;. This approach allows a natural
derivation of the charging energy expression [Eq. (Al)]
which we are using in this work. The charging energy
of single electrons against image charges in surrounding
ground planes is not considered here. 40 :

For our numencal s1mula.t10ns we chose the device pa-

\ — — -Coulomb
Modlﬁed Coulomb

V(r)

FIG. 10. Electron-electron charge interaction potentials
V(r). Coulomb, modified Coulomb, harmonic, and constant

potential.
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rameters such that the single-particle energy separation
AF is larger than the charging energy U. This is the
parameter region in which the constant charging inter-
action model is still valid.2? In general we could imple-
ment a given many-body spectrum with all its ground
states and excitations into the rate equation approach
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used here. However, we feel that at this stage detailed
calculations of state spectra will not improve our discus-
sion of the general trends discussed in this paper. Also
the confinement potentials and interaction potentials are
not known accurately?? enough to justify more detailed
calculations.
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